
A Domain-specific Language for Railway
Interlocking Systems

Linh H. Vu1, Anne E. Haxthausen1, and Jan Peleska2

1 DTU Compute, Technical University of Denmark, Denmark
2 Department of Mathematics and Computer Science

University of Bremen, Germany

Abstract. This paper presents a domain-specific language (DSL) for
describing route-based interlocking systems which are compatible with
European Train Control System ETCS Level 2. The abstract syntax
and static semantics of the language are formally defined using the
RAISE Specification Language (RSL). Furthermore, the paper describes
an interlocking table generator (ITG) that generates automatically a
well-formed interlocking table from a well-formed railway network layout.
Experiments with the DSL and ITG using the RAISE tools and the C++
implementation show that the use of the DSL and ITG can increase
the productivity and significantly reduce errors in the specifications of
railway interlocking systems.

Key words: domain-specific languages, interlocking tables, validation
and verification, railway signalling systems, formal methods

1 Introduction

In the period 2009–2021 all Danish railway signalling systems will be replaced
with the standardized European Train Control System (ETCS) Level 2 [3]. A
vital part of these new systems is the interlocking systems that are responsible
for setting safe train routes in the railway network. One of the goals of the
RobustRailS research project1 is to establish a holistic method supporting
the development and verification of these new interlocking systems and in
particular to provide automated construction and verification of the interlocking
tables. This should overcome the time consuming, error prone process of
manual construction and verification that was used in the past. As interlocking
systems have the highest safety integrity level (SIL4), formal development and
verification methods are strongly recommended by the CENELEC EN50128
standard [4]. Furthermore, the use of domain-specific languages for software
development has shown to ease the communication between domain experts,
software engineers, and certification authorities. Therefore, our RobustRailS
method combines the use of formal methods with domain-specific languages.

The main contribution of this paper is a formal specification of: (i) the
abstract syntax and static semantics of a domain-specific language (DSL) for

1 http://www.robustrails.man.dtu.dk/

describing route-based interlocking systems which are compatible with ETCS
Level 2, and (ii) an interlocking table generator (ITG) that, for a given well-
formed railway network layout, generates a statically well-formed interlocking
table. The specification of the DSL and the ITG are directly executable, but have
also been translated into C++ and integrated as part of the interlocking toolbox
in RT-Tester tool-chain [14] as shown in Fig. 1. The DSL and the ITG serve as
a front-end for providing and validating configuration data for a generic model
of the dynamic behaviour of the new Danish interlocking systems. After being
instantiated with configuration data, the model can be verified against safety
properties – such as non-collision and non-derailment – using model checking
and inductive reasoning.

DSL desc. in XML DSL desc. in C++

Parser

Static Checker

Model
Generator

Prop.
Generator

Network

Interlocking
Table

Network

Interlocking
Table

Checking
Result

Interlocking
Model

Safety Prop.

Model
Checker

×
Counter-examples

✓

ITG

Fig. 1. Development process and tool-chain for railway interlocking software systems.
The work presented in this paper is marked within the gray dashed box.

The paper is organized as follows: Sec. 2 presents the specification of DSL’s
abstract syntax in the RAISE Specification Language (RSL) [6], and Secs. 3
and 4 outline the principles of the static semantics of the language and the ITG.
Sec. 5 discusses the implementation of the language and its applications. Finally
related work and concluding remarks are presented in Sec. 6 and Sec. 7. All RSL
specifications can be found at http://www2.compute.dtu.dk/∼lvho/.

2 Abstract Syntax

A description of an interlocking system in the proposed DSL consists of a railway
network layout and an interlocking table. In the following two subsections, the
abstract syntaxes of network layouts and interlocking tables are specified as
types in RSL.

2.1 Railway Network Layouts

A railway network layout2 is a description of the topology of a railway network.
Each element in a network layout is given a unique id. Therefore, we introduce
types for ids of track sections, marker boards, and level crossings, respectively.

2 In the remaining of this paper, the terms network, network layout, railway network
layout are used interchangeably.

SecId = Text, MbId = Text, LcId = Text

A network layout is represented as a record consisting of four maps – one
for each kind of element – mapping the ids of the elements into geographical
information about these elements.

NetworkLayout ::
linears : SecId →m Linear
points : SecId →m Point
marker boards : MbId →m MarkerBoard
level crossings : LcId →m LevelCrossing

The information recorded about a linear section is composed of information
about its neighboring sections and its length. A linear section may have up to
two neighbors: one at the down end and at the up end3.

Linear ::
neighbors : LinearEnd →m SecId
length : Distance,

Direction == DOWN | UP, LinearEnd = Direction, Distance = Nat

For each point section similar information is recorded. In this case there are
up to three neighboring sections: one at the stem end, one at the plus end, and
one at the minus end. The length of a point section is the distance from the
stem tip to the plus (or minus) tip.

Point ::
neighbors : PointEnd →m SecId
length : Distance,

PointEnd == STEM | PLUS | MINUS

The information recorded about a marker board includes: the id of the section
along which it is placed, the travel direction (up or down) that it is intended for,
and the distance from the location where it is placed to the tip of the section in
the marker board’s travel direction, as illustrated in Fig. 2.

section(m)
distance(m)

mdir (m)
DOWN UP

Fig. 2. A marker board m and its associated geographical information.

MarkerBoard ::
section : SecId
dir : Direction
distance : Distance

3 In Denmark up and down denote the directions in which the distance from a certain
reference location is increasing and decreasing, respectively.

The information recorded about a level crossing is the (non-empty) set of the
(parallel) sections that it covers.

LevelCrossing :: crossed secs : SecId-set

2.2 Interlocking Tables

In order to guide trains safely through a railway network, the interlocking system
reserves exclusively a fraction of the network, called a route, for a train at a time.
Contrary to legacy systems, in ETCS Level 2, there are no physically signals
(along the tracks), but virtual signals4. A virtual signal is associated with a
marker board, and has the same geographical information as the marker board.
The aspects of virtual signals are used to calculate the movement authorities
determining how far forward trains are allowed to move [3]. A route is defined as
a path from a source signal to (another) destination signal. Both signals are in
the direction (up or down) of the route. A route is said to be elementary if there
does not exist a signal which is placed between the source and the destination
of the route and which has the same direction as the route.

An interlocking table specifies the elementary routes in a given network and
the specification for setting these routes. A specification of a route includes:
(i) the list of the sections in the path from the source to the destination, (ii) the
list of the sections used as the overlaps, (iii) a map from points used by the route
to their required positions (PLUS or MINUS), (iv) a set of protecting signals, (v) a
set of level crossings covering the sections in the route’s path and overlaps, and
(vi) a set of routes that are in conflict with the route, and therefore must not be
set at the same time as the given route.

An interlocking table is naturally represented as a map from the id of each
route into a record containing the specification of the route.

InterlockingTable = RouteId →m Route,
Route ::

source : MbId
dest : MbId
path : SecId∗

overlaps : SecId∗

points : SecId →m PointPos
signals : MbId-set
lcs : LcId-set
conflicts : RouteId-set,

RouteId = Text, PointPos == PLUS | MINUS

3 Static Semantics

The static semantics of the DSL presented in Sec. 2 are specified by predicates in
RSL. A DSL description of an interlocking system is well-formed if its network

4 The term virtual signal is abbreviated to signal in the remaining of the paper.

and interlocking table both are well-formed. For example, the predicate for
checking whether an interlocking table is well-formed w.r.t. a network layout
is defined with the following signature in RSL

is wf : InterlockingTable × NetworkLayout → Bool

This predicate is the conjunction of a number of sub-predicates that specify
well-formedness conditions, e.g. a route should have proper protection provided
by protecting signals and/or protecting points, or two routes that are physically
in conflict in the network must be listed in the routes’ specification as being in
conflict. Note that the route’s protection and conflicting routes are automatically
computed from the network layout. Afterwards, they are compared with the
route’s specification in order to determine whether the specification is correct.

Details about all well-formedness conditions can be found in the published
RSL specification of the DSL.

4 Interlocking Table Generator

This section describes an interlocking table generator (ITG) that, for a given
well-formed network, generates a statically well-formed interlocking table. The
generator is formally specified in RSL as a function with the following signature:

mk table : NetworkLayout
∼→ InterlockingTable

The function basically collects the specification of all elementary routes
in the given network. For each marker board s, the generator constructs the
specification of routes starting from s by traversing the network starting from
the first section right after s. The following information is collected during the
traversal: (i) the destination signal, (ii) the route’s path and overlaps, (iii) level
crossings covering the sections in the path and overlaps, (iv) signals for front and
flank protection of the path and overlaps, and (v) required positions of points
in the path and overlaps, and protecting points and required positions of these.

Repeating the procedure with all marker boards, we obtain a set of route
specifications. For each route specification, we try to find its alternatives by
replacing a subset of the route’s protecting points with substitute protecting
signals if it is possible. This results in a complete set of all elementary routes
for the given network. Afterwards, we assign a unique id to each route, and for
each pair of routes determine whether they are physically in conflict in the given
network layout. Eventually, a statically well-formed interlocking table for the
given network layout is produced.

5 Applications

The RSL specifications of the DSL and the ITG are executable, thus they can be
tested directly. Let us consider an example of a typical network with two tracks
as shown in Fig. 3. This network can be specified in RSL as a value n of type
NetworkLayout. Executing the RSL term mk table(n) results in a value of type
InterlockingTable

t10 t14t13t12

mb11 mb15mb13

mb12mb10 mb14
t20

mb21

mb20

t11

Fig. 3. An example railway network layout

[”01a” 7→ mk Route(”mb11”, ”mb13”, 〈”t11”, ”t12”〉, 〈〉,
[”t13” 7→ MINUS, ”t11” 7→ PLUS],
{”mb20”, ”mb12”}, {},
{”01b”, ”02a”, ”02b”, ”03”, ”04”, ”05a”, ”05b”, ”06b”, ”07”}),

... content skipped ...]

As it can be seen one of the generated routes has id 01a, goes from mb11 to mb13

via two sections t11,t12, and has no overlap. It requires point t11 (on its path)
to be in PLUS position and point t13 (outside its path) to be in MINUS position
(as a protecting point). The route has also mb20, mb12 as protecting signals, and
is in conflict with the routes 01b, 02a, 02b, 03, 04, 05a, 05b, 06b, 07.

Furthermore, the implementation of the DSL and the ITG front-end inte-
grated in RT-Tester [14] can be used to construct and validate descriptions of
networks and interlocking tables. Errors are reported together with suggestions
how to fix them, e.g. missing protecting signals, points, or conflicting routes can
be suggested to be added to the table. The tool can also generate interlocking
tables from network descriptions.

6 Related Work

Applications of formal methods to the railway domain have been investigated
by numerous research groups. The ultimate goal is to produce methods for
developing railway control systems efficiently while ensuring safety. A general
overview of the trends can be found in [5].

DSLs for the railway domain have been proved to be efficient for describing
interlocking data for other kinds of interlocking systems [8, 12, 7, 11]. Our work
goes along the same lines, but we have special focus on route-based interlocking
systems which are compatible with ETCS Level 2, e.g. we include notions such
as marker boards and virtual signals instead of physical signals.

Several other research groups [15, 1, 9, 2, 13, 10] have also investigated inter-
locking systems having interlocking tables as design specifications. They also
translate the interlocking tables into execution/design models which are then
formally verified to satisfy high-level safety requirements. In some cases [2, 13]
that verification step is also used for data validation. However, like [9], we follow
a two-step approach for verification and validation (V&V). In the first step, the
data validation is performed by the static semantics checker (described in this
paper) in order to ensure the well-formedness of the model that is generated
from the data. In the second step (which is outside the scope of this paper),

high-level safety properties of the model are verified using a bounded model
checking approach in combination with inductive reasoning.

A few ITGs have been proposed in previous research, e.g. in [13, 2], but they
have not been formally specified as our ITG. These ITGs generate tables having
data similar to a subset of our data, also by traversing the network layout.
However, the ITG in [2] does not generate any data concerning flank and front
protection. In [13], the ITG does not generate the collection of route conflicts
and items for flank and front protection, but instead in a second phase (after
the table generation) they employ model checking to derive these data which
are then added manually. Our ITG is – to our best knowledge – the only ITG
that is able provide completely automated generation of protecting points and
signals directly from the network layout.

7 Conclusion and Ongoing Work

This paper has presented a formal specification of the abstract syntax and static
semantics of a DSL for describing interlocking systems, and it has formalized
an ITG. The DSL can be used to construct and validate the configuration
data for interlocking systems, hence facilitating the automated development and
verification. Experiments show that statically well-formed interlocking tables
can be produced by “pressing a button” using the ITG. This is much more
efficient than manual construction that would have taken many man hours and
might have resulted in an interlocking table that was not statically correct and
complete. Also, unlike for manual construction, if the network layout changes,
the table can easily be re-generated and re-validated.

We have experienced that it is more efficient to develop RSL specifications of
the DSL and ITG and then translate these into C++, than to code directly
in C++. The RSL specifications are much more readable, and this ensures
that nothing is overlooked in the specification. Additionally, the fact that
specifications are executable allows us to test the specifications before translating
them.

Extensions need to be added in the future to cover other situations
encountered in practice such as complex sections with more than three neighbors.
Currently, we are working on the formal specification of the operational
semantics of the language in the form of a state transition system and on
automated verification of the safety properties.

Acknowledgments. The authors would like to thank Jan Bertelsen from Thales and

Ross Edwin Gammon and Nikhil Mohan Pande from Railnet Denmark for helping

us with their expertise about Danish interlocking systems and always being helpful

when we had questions; Dr.-Ing. Uwe Schulze and Florian Lapschies from University

of Bremen for their help with the implementation of the DSL in the RT-Tester tool-

chain. The first two authors’ research has been funded by the RobustRailS project

granted by the Danish Council for Strategic Research. The third author’s work has

been partially funded by ITEA2 project openETCS under grant agreement 11025.

References

1. Michele Banci, Alessandro Fantechi, and Stefania Gnesi. Some Experiences on
Formal Specification of Railway Interlocking Systems Using Statecharts. 2005.

2. Yan Cao, Tianhua Xu, Tao Tang, Haifeng Wang, and Lin Zhao. Automatic
Generation and Verification of Interlocking Tables Based on Domain Specific
Language for Computer Based Interlocking Systems (DSL-CBI). In Proceedings
of the IEEE International Conference on Computer Science and Automation
Engineering (CSAE 2011), pages 511 – 515. IEEE, 2011.

3. ERTMS. Annex a for ETCS Baseline 3 and GSM-R Baseline 0, April 2012.
4. European Committee for Electrotechnical Standardization. EN 50128:2011 –

Railway Applications – Communications, Signalling and Processing Systems –
Software for Railway Control and Protection Systems. CENELEC, Brussels, 2011.

5. Alessandro Fantechi. Twenty-Five Years of Formal Methods and Railways: What
Next? In Steve Counsell and Manuel Núñez, editors, Software Engineering and
Formal Methods, volume 8368 of Lecture Notes in Computer Science, pages 167–
183. Springer, 2014.

6. RAISE Language Group. The RAISE Specification Language. The BCS
Practitioners Series. Prentice Hall, 1992.

7. Anne E. Haxthausen. An Automated Generation of Formal Safety Conditions
from Railway Interlocking Tables. International Journal on Software Tools for
Technology Transfer (STTT), 2013.

8. Anne E. Haxthausen, Nikolaj Christensen, and Rasmus Dyhrberg. From Domain
Model to Domain-specific Language for Railway Control Systems. In Proceedings
of Formal Methods for Automation and Safety in Railway and Automotive Systems
(FORMS/FORMAT 2004), Braunschweig, 2004.

9. Anne E. Haxthausen, Jan Peleska, and Sebastian Kinder. A Formal Approach for
the Construction and Verification of Railway Control Systems. Formal Aspects of
Computing, 23(2):191–219, 2011.

10. Philip James, Faron Moller, HoangNga Nguyen, Markus Roggenbach, Steve
Schneider, Helen Treharne, Matthew Trumble, and David Williams. Verification
of Scheme Plans Using CSP||B. In Steve Counsell and Manuel Núñez, editors,
Software Engineering and Formal Methods, volume 8368 of Lecture Notes in
Computer Science, pages 189–204. Springer, 2014.

11. Phillip James and Markus Roggenbach. Encapsulating Formal Methods Within
Domain Specific Languages: a Solution for Verifying Railway Scheme Plans.
Mathematics in Computer Science, pages 1–28, 2014.

12. Kirsten Mewes. Domain-specific Modelling of Railway Control Systems with
Integrated Verification and Validation. Verlag Dr. Hut, 2010.

13. Ahmad Mirabadi and Mohammad Bemani Yazdi. Automatic Generation and
Verification of Railway Interlocking Control Tables Using FSM and NuSMV.
Transportation Problems, pages 103–110, 2009.

14. Jan Peleska. Industrial-Strength Model-Based Testing - State of the Art and
Current Challenges. In Alexander K. Petrenko and Holger Schlingloff, editors,
8th Workshop on Model-Based Testing, volume 111 of Electronic Proceedings in
Theoretical Computer Science, pages 3–28. Open Publishing Association, 2013.

15. K. Winter, W. Johnston, P. Robinson, P. Strooper, and L. van den Berg. Tool
Support for Checking Railway Interlocking Designs. In Proceedings of the 10th
Australian workshop on Safety Critical Systems and Software - Volume 55, SCS
’05, pages 101–107, Darlinghurst, Australia, Australia, 2006. Australian Computer
Society, Inc.

