

1

Vehicle Rotation Planning for ICE High Speed Trains

Ralf Borndörfer

joint work with O. Heismann, M. Reuther, T. Schlechte, S. Weider et. al.

RobustRailS Mini Conference 2015

DTU, Copenhagen, 27.08.2015

InterCity Express (ICE) High Speed Train

... must be used efficiently

27.08.2015

/7

Vehicle Rotation Planning and Hyperassignments | COETL 2015

3

Rotor 1.0

- ▶ in production since 7 / 2013
- integrates all technical details

Rotor 2.0

- ▶ in production since 3 / 2014
- reduced memory consumption
- implements re-optimization

Research Campus MODAL @ ZIB

27.08.2015

MODAL: Industry Partners

27.08.2015

Vehicle Rotation Planning and Hyperassignments | COETL 2015

6

MODAL: Mathematical Optimization & Data Analysis Laboratories

27.08.2015

MODAL Rail-Lab: Phases

- Builds on earlier work with DB (VR-OPT)
- ▶ 3 phases of 5 years, phase I 2015-2019
- ► 4 positions, 2 industry + 2 BMBF

Fully Dated Vehicle rotation planning

Mathematical Models and Algorithms

Integer Programming Integrated Flow and Path Model Bundle Method <u>Coarse-to-Fine Method</u>

Combinatorial Optimization Hyperassignments Hyperflows Tree Decompositions Data Analysis and System Integration

System Integration Data acquisition Interfaces Optimization cores

Data Analysis Railway Requirements Case studies and calibration Visualization and statistics

ICE Network: Connections

Timetabled Trips: 1 Day

Timetabled Trips: Standard Week

Vehicle Rotation: 1 Week

Graphics: JavaView, MATHEON F4

Vehicle Rotation: 5 Weeks

Graphics: JavaView, MATHEON F4

14

Rotation Plan: Follow-on Trip Assignment

(Blue: Timetabled Trips, Red: Deadhead Trips)

Graphics: JavaView, MATHEON F4

Again: Follow-on Trip Assignment

Railway Constraints

Wagenstandanzeiger Gleis 11

Zeit	Zug		Richtung	G	F		D	C	B		IA
00.34	EN	Jan Konpura	Rosers Poenan GL Warstowe /			sa - 500 - 5 (500 -				ing .	-
05.36	IC		BraunicTreng Magneturp Lengrg / Hulls Flugh	1	And and a second second						(<u></u>)+
06.21	ICE	Zugleburg in Harris	Criping Dible G Köln / Bonn Flughaten A bis C		Tage - Ser -	HELE DANS) ->
06.40	IC		Köln Osnabrück Slad Ekrothalm Hengelo	C					and the sectors	Ref Instance	
07.45	IC	Dierstag bis Dorrienting	Amaterdam Centrael								
07.45	IC	Montag und Freitag	Bremen								
08.45	IC .		Bremen Verden Bremen Damerkost	C' I ILES						1270	
09.40	IC		Divertision Divertisional Examination								
10.45	IC	Optimized	Dramon Oldantsung Einden			+					
11.40	IC 2046		Biolefield Gotavelun Hanzn			+				12	-
12.45	IC		Verden Verden Bremen Demenhon			+					
Re	$\mathbf{P}($	JUIC	<u>Orit</u> /	/		+	M N	- MB* - B	12" III C"	127	
14.45	IC		Verden Diemen Demenhonst Offensione			+ @ 27 22	M . M	· PA 12" - 14			-
15.31	ICE	Zugtaliung in Harnin	O bis G Köin / Bonn Flughaten A bis C Köin	+							
16.45	IC		Bronsen Chierdsung Einden Reardslatisch Male			+ - 1 1	- M - M			13° (
17.40	IC		Dorbreand Extern Dutations Köln			+ @				1	
18.45	IC		Verden Ekonen Ostreetkont			+ C II II				(E)= 6	

Photos courtesy of DB Mobility Logistics AG

17

27.08.2015

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Aaintenance

Train Composition

Timetable Regularity \rightarrow Rotation Regularity

Wagenst	andanzeig	er Gleis	11						130
Zeit Zug	Richtung	G	E	E	D	C	E	-	
00.34 EN	Roman Roman GL Poemen GL Warszawa /	2000	- 200 a 20						
05.36 IC	Haunchenig Magescurg Leberg / Hulla Flugh	SLFL.							
06.21 ICE Jugini	Leipzig arg in Hamm D bas 0 Köln / Bonn Flughaten A bis C		And the And the And	Hand Dave Hand	Aller Case		100 100 100	(<u></u>)→	
06.40 IC	Köln Osnabröck Elad Bantheim Messenie	← <u>(</u>](iii)[2]					teen bet besteen bei be		
07.45 IC	g bis stag								
07.45 IC Morray	Bremen Lund Freitag		+()						
U8.45 IG	Bremes			+ <u>C</u> II II		" . R			
09.40 10	Datherhost Oldenburg Datehts			+ 2 1					
10.45 IC Outbin	Essen Düsseldorf sland Branen			+ @	" <u> </u> <u> </u> <u> </u>		2* BC B		
11.40.10	Oldanburg Ernden Norddaich Mole Belefaid			+ @	·	· . P · . P	** P C* P		
11.40 10	Gütersloh Harren Dortmund			+ @ 18 1	- A A	·	2ª 📕 🖓 😫		
12.45	Bremen Detmanhorst Oldenburg			+ C	* M * H	· P. * . P.	* M: 8		
13.40 IC	Dostrad Dortmund Esten Düsseldorf			+ @	" .M" .M		* 8:		
14.45	Verden Etransen Detmenhorst Oktentisung			+ @ 20 2	· M· M	· PH : * . PH			
15.31 ICE 2.00	ung in Hamm D Bis 0. Kölin / Bossn Flughaften A bis C. Kölin	+							ET ES
16.45	Bronsen Oktamburg Einden			+ @		28 2	* 87 8		
17.40	Dortmund Esten Duisters			+ @ 11 11		28 2	** · · · · · · · · · · · · · · · · · ·		
18.45	Verden Verden Betmenhonst			· / II	· 2· 8		·		
19.40 IC	Balefnid Goternich Hatem			+ C E E		26 2	- 8." 8		
20.45	Dontmand Vierdan Enemen Dateschorst (Distantions)	1		+ CH	· A. H		- 8.		

27.08.2015

Modeling Rotation Regularity ...

Modeling Rotation Regularity via Hyperarcs

20

O)

Hyperassignment Solution

21

Bipartite Hypergraph Model

A hypergraph G is called bipartite if

- its vertex set can be written as the disjoint union of two vertex sets U and V with the same size |U| = |V|, and
- every hyperedge $e \in E$ has the same number $|e \cap U| = |e \cap V|$ of vertices in U and V.

We then represent G as a triple G = (U, V, E).

23

A hyperassignment is a subset H of E such that there is exactly one incident hyperedge for every vertex.

Vehicle Rotation Planning and Hyperassignments | CO∈TL 2015

24

The Hyperassignment Problem

Definition (Hyperassignment Problem)

Input: A bipartite hypergraph G = (U, V, E) with edge costs $c_e \in \mathbb{R}$. Output: A minimum cost hyperassignment H^* in G, i.e., a hyper-assignment H^* s.t.

 $c(H^*) = \min\{c(H), H \text{ is a hyperassignment in } G\}$

or the statement that no hyperassignment exists.

$$\min \begin{array}{c} c^T x \\ x(\delta^+(v)) = 1 \quad \forall v \in U \cup V \\ x(\delta^-(v)) = 1 \quad \forall v \in U \cup V \\ x \in \{0,1\}^E \end{array}$$

The HAP is a special type of set partitioning problem.

Complexity Results

Theorem (B., Heismann [2011], Heismann [2014])

- 1. The HAP is NP-hard and APX-hard, even for bipartite hypergraphs with maximum hyperedge size 4.
- 2. The set packing/covering relaxations of the HAP are NPhard, even for bipartite hypergraphs with maximum hyperedge size 6.
- 3. The LP/IP gap can be arbitrarily large.
- 4. The determinants of basis matrices can be arbitrarily large.

Solution of the LP Relaxation

Fractional solution, cost = 0.615.

27.08.2015

Vehicle Rotation Planning and Hyperassignments | COETL 2015

29

Solution of the LP Relaxation

- Fractional solution, cost = 0.615.
- ► The red hyperedge clique inequality separates this solution.
- Cliques can be separated efficiently by exploiting a "partitioning structure".

Partitioned Hypergraphs

A

Theorem (B., Heismann [2012])

Every HAP in a bipartite hypergraph G = (U, V, E) can be polynomially transformed into a HAP in a partitioned hypergraph with $d = 0.5 \max_{e \in E} |e|$.

Theorem (B., Heismann [2011])

Every (hyperedge) clique in a partitioned hypergraph is a subset of the incident hyperedges δ(P) of some part P.
The (hyperedge) conflict graph contains no holes of any size and no antiholes of size < 7.

Solution of the LP Relaxation

- Fractional solution, cost = 0.635.
- Consider the 7=2·3+1 cliques associated with the vertices $v_1, v_3, v_4, u_2, u_3, u_4$ and the clique $\{v_5, v_6, u_3, u_4\}, \{v_5, u_3\}, \{v_5, u_4\}$.

Solution of the LP Relaxation

- Fractional solution, cost = 0.635.
- Consider the 7=2·3+1 cliques associated with the vertices $v_1, v_3, v_4, u_2, u_3, u_4$ and the clique $\{v_5, v_6, u_3, u_4\}, \{v_5, u_3\}, \{v_5, u_4\}$.
- Every red hyperedge is contained in at least two of these cliques.
- We can take at most three of these edges.

Odd Set leqs for the (Perfect) Matching Problem

$$\sum_{e \in E} \left[\frac{||v| + |v| +$$

 Complete description of the matching polytope (together with the degree and non-negativity constraints), Edmonds [1965]

27.08.2015

Odd Clique Set leqs for General Hypergraphs

$$\sum_{e \in E} \left\lfloor \frac{|\{v \in V' : e \in \delta(v)\}|}{p} \right\rfloor x_e \le \left\lfloor \frac{|V'|}{p} \right\rfloor \quad \forall V' \subseteq V$$

Related to clique set inequalities by Pêcher & Wagler [2006]

38

Odd Clique Set leqs for General Hypergraphs

Theorem (B., Heismann [2011])

Let Q be a set of at least three hyperedge cliques in G = (V, E), $2 \le p \le |Q|$ be an integer number, $r := |Q| \mod p$, and $q_e := |\{Q \in Q : Q \ni e\}|$. Then

$$\sum_{e \in E} \left(\left\lfloor \frac{q_e}{p} \right\rfloor + \max\left\{ 0, \frac{q_e \mod p - r}{p - r} \right\} \right) x_e \le \left\lfloor \frac{|\mathcal{Q}|}{p} \right\rfloor.$$
Hyperassignment Solution

▶ Integer solution, cost = 1.010.

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Railway Constraints

Wagenstandanzeiger Gleis 11

Zeit	Zug		Richtung	G	E		D	C	B		IA
00.34	EN	Jan Konpura	Roman (E. Warszawa /	200							-
05.36	IC		Braundoweg Magodourg Leong / Italia Flugh		And Division in which the						
06.21	ICE	Zugleburg in Hamm	Leipzig D bis O Köin / Bonn Flughaten A bis C		Tani ber Bali ber Tani 20 Bali 10 Bali	The last state					_)+
06.40	IC	1	OveratinGets Blad Bandholm Hongato	A CONTRACTOR					the between	ter bester	
07.45	IC	Develag bis Dovietslag	Branne							িয়	
07.45	IC	Montag und Freitug	Braman			+ / EE E				1200	
08.45	IC BH		Vorden Bramen Demekhorst Obtenhung	C. III I I I		+ - 2 2				127	
09.40	IC		Denthey Dorthund Exem Dissektorf			+ C A A			Nº 130		
10.45	IC	Dathiasland	Dramon Oldenburg Emden Norshfaloh Male			+ @			11 I.C.		<u></u>
11.40	1C		Eveletekt Gilterek/h Henten Dortmand			+ @				13ª 6	-
12.45	IC		Verden Bremen Demanhon Obtenbym			• C .	- M R		2" III C*		-
Re)(JUI		/		+ @ A* A		21	2* E C*	12° (
14.45	IC 2000		Verden Diemen Deimenhonst Oldentsorg			+ @	· M · · M		20 MC		
15.31	ICE	Zughaliung in Harrin	O bis G Köln / Bonn Flughaten A bis C Köln	+						# E	I III I
16.45	IC		Bronsen Chaerburg Einden Norddelich Mole			+ @	· M · . M	- P	2* M (?*		
17.40	IC nu		Dorstand Ensur Dutation: Kôle			+~			** M (2*	13 C	
18.45	IC		Verdert Remen Detreertsonti Oldeniterra			+ @		. PI* P	24 MICA	E 2	

Photos courtesy of DB Mobility Logistics AG

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Aaintenance

Train Composition

27.08.2015

Train Composition

Zeit	Zug		Richtung	Α		В		С		D		E
06.12	D 773	Di bis Sa 29 Mai 2005 bis 11 Jun 2006 auch 29 Mai 2006	Neumünster Hamburg Hamburg Stuttgart		14	12	11	10	<u> </u>			
06.12	AZ 773	außer So 12.Jun 2006 bis 9.Dez 2006	Neumünster Hamburg Hamburg	<u>~</u> ==	14	12	11	10	2 9 4 0			
06.12	ALX 773	11.Dez 2005 bis 27 Mai 2006	Neumünster Hamburg Hamburg		14	13	12	11 1	10			
07.12	ICE		Neumünster Hamburg Hamburg	/ 28 L	27	26 1	24	23 🛄	22 🛦 📖	31		
08.12	EC		München Neumünster Hamburg Hamburg		14	12	11	10	9 <u>4</u> 1			
12.38	UEx	50 11 Daz 2005 bis 18 Daz 2005 50 Dag 2005 bis 18 Daz 2005	Stuttgart Neumünster Hamburg Hamburg		14	12	11	10	2 			
12.38	X 927	auch 26 Dez 2006 No und So 17 Apr 2006 bis 23 Apr 2006	München Neumünster Hamburg Hamburg		14	12 4	11	10	9			
12.38	RE	5a 1 Mai 2006 bis 21 Mai 2005 auch 26 Dez 2005, 1 Mai 2006	München Neumünster Hamburg Hamburg	<u></u>	14 4 5		11	10	2 🛶 🗖	7		
12.38	THA	12 Dar 2005 bis 25 Dar 2005 nicht 18 Dar 2005 aufär 50	München Neumünster Hamburg Hamburg			12		10	2 🛶 🔺	7	6 5	5
12.38	MET	26.Dez 2005 bis 9.Apr 2006 nicht 18.Dez 2005, 26.Dez 2005 Di bis 58 10.Apr 2005 bis 7.Mei 2005	Nürnberg Neumünster Hamburg			-			2	2 🚊 2	<u> </u>	2 2
12.38	⁹²⁷ CIS	auch 10 Apr 2006, 16 Apr 2006, 24 Apr 2006 auch 30 Apr 2006 aufer So	Nürnberg Neumünster Hamburg							-		
16.12	927 NZ	B Mai 2006 bis 27. Mai 2006	Hamburg Nümberg Neumünster Hamburg	<u></u>	14	12	11	10	2 🚆 👗			
18.38	675 EN	28 Mai 2006 bis 9 Daz 2006	Hamburg Stuttgart Neumünster Hamburg		14 📼	12	11	10	<u> </u>	1		
18.38		11.Dez 2005 bis 27 Mai 2006	Hamburg Basel SBB Neumünster	<u></u>	2 🗖	2 2	2 3	2 4	2 1	2 6 2 2	7	2 🚔 🚺
.0.00	809		Hamburg Basel SBB		14	12	11	10	2 🛁 👗 🕻	2 7 2	6	2 5 2
				A		В		С		D		E

Rare Train Composition Example

Train Composition: Type, Order, Orientation

27.08.2015

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Hypergraph Model: Possible Train Compositions

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Hypergraph Model: Arrival and Departure Nodes

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Hypergraph Model: Single Traction

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Hypergraph Model: Double Traction

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Hypergraph Model: Triple Traction

27.08.2015

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Hypergraph Model: Pass-Through Connections

Hypergraph Model: Pass-Through Connections

Hypergraph Model: All Connections

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Hypergraph Model: Zoom

27.08.2015

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Ô

Hypergraph Model: Timetabled Trips

27.08.2015

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Hypergraph Model: Connections

27.08.2015

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Hypergraph Model: All Connections

27.08.2015

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Hypergraph Model: Two Daily Trains

27.08.2015

Hypergraph Model: Max Regularity (0 Idle Days)

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Hypergraph Model: Max Regularity (1 Idle Day)

27.08.2015

Hypergraph Model: Max Regularity (2 Idle Days)

Hypergraph Model: Max Regularity (3 Idle Days)

27.08.2015

Hypergraph Model: Max Regularity (4 Idle Days)

27.08.2015

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Hypergraph Model: Max Regularity (5 Idle Days)

Hypergraph Model: Max Regularity (6 Idle Days)

Hypergraph Model: Max Regularity (All Options)

27.08.2015

Hyperflow Model

Vehicle Rotation Planning Problem

Cover all timetabled trips by rotations such that turns and train composition are regular.

Hypergraph Multi Commodity Flow Problem

Find a cost minimal hyperflow such that every node configuration is covered by exactly one hyperarc.

Hyperarcs for

- (regular) trips
- (regular) connections

$$\min c^{T} x$$

$$x(d, \delta^{+}(v)) = x(d, \delta^{-}(v)) \quad \forall v \in V, d \in D$$

$$x(\delta^{+}(t)) = 1 \qquad \forall t \in T$$

$$x \in \{0,1\}^{A \cup M}$$

The Coarse-to-Fine Method

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Coarse-to-Fine Method: Layers

Problem specific layers:

- composition layer (with order and orientation, fine)
- configuration layer (with types and combinations, coarse)
- vehicle layer (individual vehicle flow, very coarse)

The layers are defined in terms of projections of hypergraphs that correspond to the projection of rows of the LP/IP.

Coarse-to-Fine Method: General Setting

- Row and column index sets I = [m], J = [n]
- Matrix $A \in \mathbb{R}^{I \times J}$
- Rhs $b \in \mathbb{R}^{I}$
- Objective $c \in \mathbb{R}^J$
- ► Linear Program

and its dual

$$\min c^T x$$
$$Ax = b$$
$$x \ge 0$$

27.08.2015

$$\max y^{T}b$$
$$y^{T}A = c^{T}$$
$$y \in \mathbf{IR}^{I}$$

- Aggregate/project the rows I of the (LP) by a problem specific coarsening projection []: $I \rightarrow [I]$ (induces an equivalence relation)
- ► For a column vector $v \in \mathbb{R}^{I}$ we define the coarsening of v as $[v][i] \coloneqq (\min\{v_{k}: k \in I, [k] = [i]\}, \max\{v_{k}: k \in I, [k] = [i]\}) \cdot \tau(v, i)$ where $\tau(v, i) \coloneqq |\{v_{k} \neq 0: [k] = [i]\}|$
- Coarse bimatrix [A], coarse dual vector $[\pi]$
- Coarse objective function $[c] \coloneqq c$ (no coarsening)

27.08.2015

$$\min[c]^T x, [A]x[=][b], x \in \mathbb{R}^{[J]},$$

where

$$[A]x[=][b]: \Leftrightarrow [b]_{[i]1} \le \sum_{j \in J} [A_{\cdot j}]_{[i]2} x_j, \ \sum_{j \in J} [A_{\cdot j}]_{[i]1} x_j \le [b]_{[i]2}, \ \forall [i].$$

Let $P(A, b) \coloneqq \{Ax = b, x \ge 0\}$ and $P([A], [b]) \coloneqq \{[A]x[=][b], x \ge 0\}.$

Lemma (B., Reuther, Schlechte, Weider [2015])

$P(A,b) \subseteq P([A],[b]).$

27.08.2015

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Coarse-to-Fine Method: Coarse Reduced Cost

• Multiplication of pairs $(a_1, b_1), (a_2, b_2) \in \mathbb{R}^2$:

 $(a_1, b_1), (a_2, b_2) \coloneqq \max\{a_1b_1, a_1b_2, a_2b_1, a_2b_2\}$

Coarse reduced cost for column j

$$\overline{[c_j]} \coloneqq [c_j] - [\pi]^T \cdot [a_j]$$

Lemma (B., Reuther, Schlechte, Weider [2015])

The coarse reduced cost always underestimates the original reduced cost

$$\overline{[c_j]} \coloneqq [c_j] - [\pi]^T \cdot [a_j] \le c_j - \pi^T \cdot a_j = \overline{c_j}.$$

Use the coarse reduced cost for pricing in the fine model.

Coarse-to-Fine Method: Example

(c1 C_2 C_3 C_4 C_5 C_6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25) = 0 $+x_3$ X_1 $-x_5$ $-x_{7}$ π_1 ÷ = 0 X_2 $+x_4$ $-x_6 - x_7$ π_2 = 0 X_5 $+ x_7$ π_3 $-x_{11}$ $-x_{13}$; ÷ = 0 $x_6 + x_7$ π_4 $-x_{11}$ $-x_{13}$ = 0 X_1 $+ x_4$ π_5 $-x_{8}$ $-x_{10}$ =0 $x_2 + x_3$ $-x_9 - x_{10}$ π_6 $+x_{10}$ = 0X8 $-x_{12}-x_{13}$ π_7 = 0 $x_9 + x_{10}$ $-x_{12}-x_{13}$ π_8 =0 $+x_{13}-x_{14}$ x11 π_{9} ÷ ÷ $+x_{13}-x_{14}$ =0 X11 π_{10} = 0X14 $-x_{16}$ π_{11} ÷ ÷ = 0X14 $-x_{17}$ π_{12} = 0 $x_{12} + x_{13}$ $-x_{15}$ π_{13} $x_{12} + x_{13}$ = 0 $-x_{15}$ π_{14} = 0X15 $-x_{18}$ π_{15} = 0X15 - X19 π_{16} = 0 $+x_{19} - x_{20}$ X17 π_{17} $+x_{20}$ =0 $-x_1 - x_2 - x_3 - x_4$ π_{18} =0 $+x_{18}$ X16 $-x_{21}$ π_{19} =0 $x_{21} - x_{22}$ π_{20} $x_{22} - x_{23}$ = 0 π_{21} =0 $x_{23} - x_{24}$ π_{22} $x_{24} - x_{25} = 0$ π_{23}

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Coarse-to-Fine Method: Example

Coarse-to-Fine Method: Example

Coarse-to-Fine Method: Coarse Pricing

27.08.2015

Vehicle Rotation Planning and Hyperassignments | COETL 2015

- ► The solution of the root LP is 1.5-2x slower
- ► The solution of the node LPs is 10-20 x faster
- Memory consumption is much smaller

Railway Constraints

Wagenstandanzeiger Gleis 11

Zeit	Zug		Richtung	G	F		D	C	B		IA
00.34	EN	Jan Konpura	Rosers Poenan GL Warstowe /			sa - 500 - 5 (500 -				ing .	
05.36	IC		BraunicTreng Magneturp Lengrg / Hulls Flugh	1	And and a second second						(<u></u>)+
06.21	ICE	Zugleburg in Harris	Criping Dible G Köln / Bonn Flughaten A bis C		Tage - Ser -	HELE DANS) ->
06.40	IC		Köln Osnabrück Slad Bersheim Hengelo	C					and the sectors	Ref Institute	
07.45	IC	Dierstag bis Dorrienting	Amaterdam Centrael								
07.45	IC	Montag und Freitag	Bremen								
08.45	IC .		Bremen Verden Bremen Damerkost	C' I ILES						1270	
09.40	IC		Divertision Divertision Examination								
10.45	IC	Optimized	Dramon Oldantsung Einden			+					
11.40	1C		Biolefield Gotwelije Hanze			+				12	-
12.45	IC		Verden Verden Bremen Demenhon			+		- RIP - R			
Re	$\mathbf{P}($	JUIC	<u>Orit</u> /	/		+	M N	- MB* - B	12" III C"	127	
14.45	IC		Verden Diemen Demenhonst Offensione			+ @ 27 22	M . M	· PA 12" - 14			-
15.31	ICE	Zugtaliung in Harnin	O bis G Köin / Bonn Flughaten A bis C Köin	+							
16.45	IC		Bronsen Oktientiverg Einden Neuroklasisch Mole			+	- M - M			(IF (
17.40	IC		Dorbreand Excert Dutations Köln			+ @				1	
18.45	IC		Verden Ekomen Demerkent			+ C II II				(E)= 6	

Photos courtesy of DB Mobility Logistics AG

Agintenance

Train Composition

27.08.2015

Maintenance: Service Intervals

Blue: timetabled trips Green: 4000 km treatment Dark gray: 8250 km treatment Yellow: 33000 km treatment Pink: 66000 km treatment Red: 198000 km treatment Light gray: 15 days treatment Turquoise: 30 days treatment

Vehicle Rotation Planning and Hyperassignments | COETL 2015

Railway Constraints

Wagenstandanzeiger Gleis 11

Zeit	Zug		Richtung	G	F	E	D	C	B		A
00.34	EN	Jan Kospuna	Respire Polenan GE Warstawa /	100		a - 20 - 20				ine and a second	
05.36	IC		Braunschweig Maginturp Leipzig / Halls Flugh	- 1 1							
06.21	ICE	Zugleburg in Harris	Leiping D bes G Köin / Bonn Flughaten A bis C		Tani ban Ban Ban Ban	Maria Barris Barris)→
06.40	IC		OsnatinGos Bad Bentholm Hongelo Amsterdam Cantraal		-				Lan Initiation	ter bester	
07.45	IC	Develag bis Dovreising	Braman		-	9 8 8			150 E CO	121	
07.45	IC	Montag and Freitag	Braman			+					·
08.45	IC BH		Verden Bramen Demenhorst Obterburg			+ - 2 2				20	
09.40	IC		Deteriory Dortmanet Exercitionet			+ C A A			Nº 130		
10.45	IC	Dathiesland	Dramon Oldenburg Einden Rochtaich Mais			+ (* LE 11			1 A.C.		-
11.40	1C		Elisiefett Güterelut Hanza Destround			+ (* EB . S				1200	
12.45	IC		Verden Bremen Demoertoor Obterteen			• C B B			R* E.C*		
Re	P (JUK	DHITN	/		+ @	- M- A			E (<u></u>
14.45	IC		Verden Dremen Demenhonst Okteologra			+	· M · M	· PI · · · PI	20 M C*	137 6	
15.31	ICE	Zugtaliung in Harrin	O bis G Köln / Bonn Flughafen A bis C Köln	+						e Tas	
16.45	IC		Bromen Oklandung Einden Nordelisisch Male			+ C A A		- 2 - 2	2* 1 17*		
17.40	IC		Dorbreand Exear Dualstrag Kóln			+ @			** M (2*	13 C	
18.45	IC		Verden Ekomen Demerkont Osteren			+ @		. R 1* R		E 2	

Photos courtesy of DB Mobility Logistics AG

Train Composition

Agintenance

27.08.2015

Parking: Keeping It Simple

Siding	Length/m	Feasible Assignments
1	570	XXX, YYY, XXX+YYY, YYY+YYY
2	480	XXX, YYY, YYY+YYY
3	430	XXX, YYY, YYY+YYY
4,5,6	420	XXX, YYY, YYY+YYY
7	410	XXX, YYY, YYY+YYY
8	390	XXX, YYY
9,10,11	240	YYY
12,13,14	210	YYY

Vehicle Rotation Planning Model

$$\min \sum_{\alpha \in H} c_{\alpha} x_{\alpha}, \qquad (objective)$$

$$\sum_{\alpha \in H(t)} x_{\alpha} = 1 \qquad \forall t \in T, \qquad (1)$$

$$\sum_{\alpha \in H(|v|)^{in}} x_{\alpha} = \sum_{\alpha \in H(v)^{out}} x_{\alpha} \qquad \forall v \in V, \qquad (2)$$

$$w_{a}^{I} \leq \sum_{\alpha \in H(a)} U_{I} \times_{\alpha} \qquad \forall a \in A, I \in L,$$
 (3)

$$\sum_{\boldsymbol{a}\in\boldsymbol{A}(\boldsymbol{v})^{\text{out}}} w_{\boldsymbol{a}}^{\boldsymbol{I}} - \sum_{\boldsymbol{a}\in\boldsymbol{A}(\boldsymbol{v})^{\text{in}}} w_{\boldsymbol{a}}^{\boldsymbol{I}} = \sum_{\boldsymbol{\alpha}\in\boldsymbol{H}(\boldsymbol{v})^{\text{out}}} r_{\boldsymbol{I}}^{\boldsymbol{v}}(\boldsymbol{\alpha}) \times_{\boldsymbol{\alpha}} \quad \forall \boldsymbol{v}\in\boldsymbol{V}, \ \boldsymbol{I}\in\boldsymbol{L},$$
(4)

$$\sum_{a \in \boldsymbol{H}} \boldsymbol{r}_{\boldsymbol{b}}(a) \boldsymbol{x}_{a} \leq \boldsymbol{U}_{\boldsymbol{b}} \qquad \forall \boldsymbol{b} \in \boldsymbol{B},$$
(5)

$$x_{\mathfrak{a}} \in \{0, 1\}$$
 $\forall \mathfrak{a} \in H,$ (6)

$$w'_{a} \in [0, U_{I}] \subset \mathbb{Q}_{+} \qquad \forall a \in A, I \in L$$
(7)

Ô

Real World Example: Scenario 1

Input	#	Objective	Goal
Timetabled trips	798	Coverage	100%
Connections	171	Rows	Minimum
 Maintenance interval Small: every 12500 km @ 1 depot Monthly: every 25000 km @ 1 depot Big: every 50000 km @ 1 depot 	3	No of. maintenance services	Minimum
Stations	14		
Depots	7		

Objective	Reference solution	VS-OPT rail
Rows	20 + 300 km deadhead	19 + 300 km deadhead
CPU time (hh:mm)	— : —	00:20

27.08.2015

89 O MODAL

Real World Example: Scenario 2

Input	#	Objective	Goal	
Timetabled trips	1292	Trip coverage	100%	
Connections	1009	Rows	Minimum	
 Maintenance intervals Refuel: every 600 km @ 10 depots Small: every 15000 km @ 1 depot Big: every 60000 km @ 1 depot) 	3	No of maintenance services	Minimum	
Stations	26			
Depots	34			

Objective	Reference solution	VS-OPT rail
Rows	29 + 5500 km deadhead	26 + 3300 km deadhead
CPU time (hh:mm)	—:—	08:48

27.08.2015

90 Other and the second second

Delay Resistant Train Rotations

Measuring Robustness as Expected Propagated Delay

Initially set arrival delay $AD_t = 0$.

For a trip *t*:

- C_t set of connecting trips
- b_{s,t} stop over time
- D_t primary delay (e.g. breakdowns, disruptions)
- c turn over time (e.g. cleaning, crew changes)

Minimizing the Expected Propagated Delay

- Computing the propagated delay distribution requires a convolution
- Approximate primary delay using discrete random variables
- Numerical effort is quadratic in the number of discretization intervals
- Approach: penalize small buffers, verify EPD

Approximation of $X \sim \operatorname{Exp}(1)$

EPD: -9% EPD for +5% Cost?

The Price of Regularity: Case Study

Real world scenario

- 670 timetabled trips (127 trains)
- ► 52 locations
- vehicle compositions of size at most two
- 4 946 356 hyperarcs

Bi-criteria objective function

- Minimize operational cost including
 - cost for rolling stock
 - cost for deadhead trips
 - cost for additional turn around trips
 - cost for violating planned turn times
- Maximize regularity (i.e., minimize irregularity penalty R)
- Weighted sum method

PoR: Complex Coupling Requirements

27.08.2015

PoR: Complex Coupling Requirements (cont'd)

Vehicle Rotation Planning and Hyperassignments | COETL 2015

97 🔘

PoR: Additional Turn-around Trips

PoR: Additional Turn-around Trips

PoR: Additional Turn-around Trips

PoR: Results

Thank you for your attention

THE POWER OF COOPERATION

Ralf Borndörfer

Zuse Institute Berlin Freie Universität Berlin Takustr. 7 14195 Berlin Germany

Fon (+49 30) 84185-243 Fax (+49 30) 84185-269

borndoerfer@zib.de

http://www.zib.de/borndoerfer

