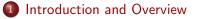
Integrated Disruption Planning Rolling Stock and Depot Scheduling

Jørgen T. Haahr Richard M. Lusby David Pisinger Jesper Larsen


Department of Management Engineering Technical University of Denmark

RobustRailS Mini Conference 2015, August 27st 2015, Kgs. Lyngby

 $f(x+\Delta x) = \sum_{a=0}^{\infty} \frac{(\Delta x)^{b}}{i!} f^{a}(x) a^{a} = \frac{1}{2} \sum_{a=0}^{\infty} \frac{(\Delta x)^{b}}{i!} f^{a}($

DTU Management Engineering Department of Management Engineering Agenda

2 Rolling Stock

Oepot Parking

Agenda

Introduction and Overview

2 Rolling Stock

3 Depot Parking

Integration

5 Conclusions

Research Question...

How does one optimally recover the timetable, rolling stock, depot schedules in a disrupted environment?

Done manually to a large extent

- Complex situation
- Short time

Main collaborators

DSB & Stog

Haahr, Lusby, Pisinger, Larsen (DTU)

Reactive Robustness

When things do not go according to plan ...

- Disruption Causes
 - Infrastructure breakdown
 - Equipment failure
 - Passenger behavior
 - Weather

- Proactive Robustness prevent disruption
- Reactive Robustness handle disruption
 - Re-schedule optimize same problem
 - Run-time requirements only faster

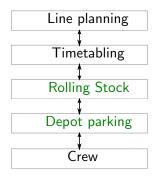
Haahr, Lusby, Pisinger, Larsen (DTU)

Reactive Robustness

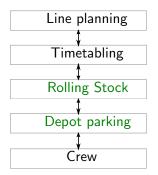
When things do not go according to plan ...

- Disruption Causes
 - Infrastructure breakdown
 - Equipment failure
 - Passenger behavior
 - Weather

- Proactive Robustness prevent disruption
- Reactive Robustness handle disruption
 - Re-schedule optimize same problem
 - Run-time requirements only faster



Railway Optimization Problems Interdepent problems


Our focus

- Rolling Stock
- Depot Parking
- Integration
- Disruption context

Railway Optimization Problems Interdepent problems

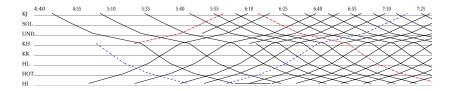
Our focus

- Rolling Stock
- Depot Parking
- Integration
- Disruption context

2 Rolling Stock

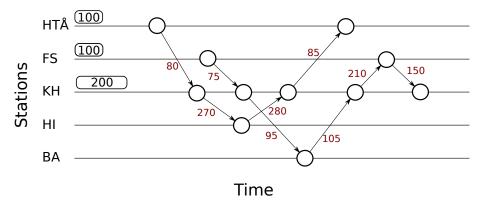
3 Depot Parking

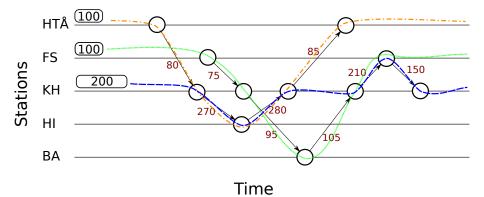
Integration


5 Conclusions

Rolling Stock (Re-)scheduling

Rolling Stock Circulation


- Timetable planned trips
- Fleet units available
- Depots parking
- Objective
 - Cover trips
 - Satisfy demand
 - Minimize operational cost
 - End-of-day balance
 - Shunting operations


Rolling Stock (Re-)scheduling Example

Rolling Stock (Re-)scheduling Example

Rolling Stock (Re-)scheduling Normal and disruption cases

Instance	Cost	Km	Demand	Shunting	Cover	Time
NS	639 065	553 310	15 755	70 000	99.9%	465
DSBmon	719 184	555 970	132 214	31 000	98.5%	119
DSBfri	727 159	583 505	119 654	24 000	98.6%	37
DSBsat	418 148	313 469	87 679	17 000	98.3%	10
DSBsun	413 062	297 574	93 489	22 000	98.1%	4

- Planning cases solved in 4-465 seconds
- Balance between objectives
 - High demand cover
- 36 disruption cases solve within 30 seconds on average

Parking the Rolling Stock A possible dead end

An optimized rolling stock plan

- Valid circulation \checkmark
- \bullet Sufficient aggregated capacity at depots \checkmark
- Sufficent time for shunting operations \checkmark
- Sufficient capacity on individual tracks ?
- Any conflict-free track assignment ?

A new (different) plan is needed

Parking the Rolling Stock A possible dead end

An optimized rolling stock plan

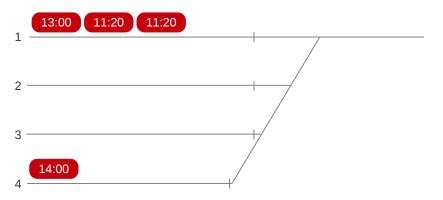
- Valid circulation \checkmark
- \bullet Sufficient aggregated capacity at depots \checkmark
- Sufficent time for shunting operations \checkmark
- Sufficient capacity on individual tracks ?
- Any conflict-free track assignment ?

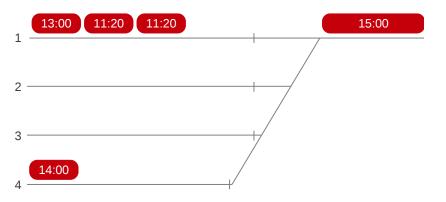
A new (different) plan is needed

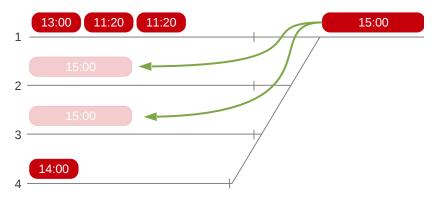
2 Rolling Stock

Oepot Parking

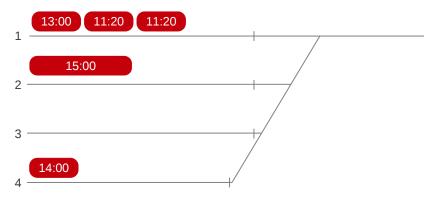
Integration


5 Conclusions


Depot Parking Shunting yard



- Given: arrival and departing events
- Need: a unit-to-track assignment
- Tracks count, length
- Conflicting assignments LIFO
- Compatibility electrified, cleaning and more

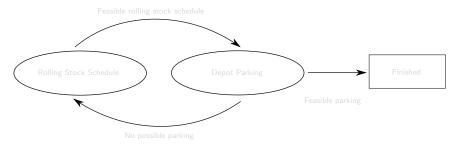


Depot Parking Benchmark Exact and heuristic methods

Class	MIP	CP	BAC	СРН	RGCH	TSH
Stog	94	94	94	94	94	93
DSB	0	0	7	0	7	7
NS	0	0	93	110	110	110
NS-hard	0	0	27	79	70	90

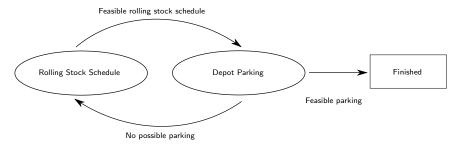
- Naive exact methods only work on small instances
- Greedy method and decompositions perform well
 - Within a few seconds

Introduction and Overview


- 2 Rolling Stock
- 3 Depot Parking
- Integration

Integration Rolling Stock and Depot Parking

Rolling stock schedule \rightarrow shunting events



- Idea: forbid arrival-and-departure pattern and resolve
- Maintain optimality

Integration Rolling Stock and Depot Parking

Rolling stock schedule \rightarrow shunting events

- Idea: forbid arrival-and-departure pattern and resolve
- Maintain optimality

Rolling Stock Scheduling and Depot Parking Results DSB S-tog cases

Instance	Time (s)	Iterations	Instance	Time (s)	Iteratio
Fri1	128	1	Sat1	23	1
Fri2	154	1	Sat2	18	1
Fri3	80	1	Sat3	23	1
Fri4	94	1	Sat4	13	1
Fri5	79	1	Sat5	11	1


- Different rolling stock schedules
- No initial parking given
- Fast solution time but no iterations required

Introduction and Overview

- 2 Rolling Stock
- 3 Depot Parking
- Integration

Conclusions

Summing up

- Developed methods for rolling stock scheduling and depot parking
- Tested on S-tog, DSB and NS cases
- Integration
 - First work to integrate rolling stock and depot parking (incl timetabling and maintenance),

Future

- Reliability and safety first
- Include more practical constraints
- Commitment from collaborators

Conclusions

Summing up

- Developed methods for rolling stock scheduling and depot parking
- Tested on S-tog, DSB and NS cases
- Integration
 - First work to integrate rolling stock and depot parking (incl timetabling and maintenance),

Future

- Reliability and safety first
- Include more practical constraints
- Commitment from collaborators

Thank You

Questions or comments?

Haahr, Lusby, Pisinger, Larsen (DTU)

Rolling Stock and Depot Scheduling