RobustRailS Mini Conference August 27, 2015

Robustness in Railway Transport
 August 27, 2015

DTU Transport

Otto Anker Nielsen, oan@transport.dtu.dk

DTU Transport
Institut for Transport

Two perspectives

1) Train and system performance

20. MA. 2015 KL. 06.46

Nye forsinkelser for tog på Vestfyn
Fejlen ved et sporskifte i Tommerup er rettet, men det har skabt forsinkelser.

Det korer ikke for DSB og Banedanmark i disse uger. (Foto: DSB - pressefoto © DSB)
2) Passenger experience

DSB til forsinkede passagerer: Nyd udsigten
Fortsat problemer med togdriften over Fyn
A. Claus Jessen veclussent

Robustness in railway transport

How robust the system is in order to avoid

- Delays
- Cancelled trains

Fejl på fejl på fejl

1.44-togene har fra start været farce, der af eksperter er udnævint til en af af turopas sterste togskandaler. Ekstra Bladet har her listet alle de fell, man indtil hidere har konstateret pả de 50 tog. DSB indtil videre har modtaget fra den italienske producent.

Kabine

da Lo ne St ve

 Loftpaneler: Paneleme over passagererne sidder lost og kan falde Stoj: En Ekstra Blads-læeser ha ved: En Ekstra Blads-læser har mált larm på op mod 100 decibelved sexde pâ forste klasse. Varmeanlæg: Ivinteren 2010 virkede mange af varmeanlægsene iike. Det forte till iskolde kabiner. Da man endelig fik ordnet
problemet, ferte det til overophedede kabiner. Moblid dækning: Mobild dakningene e elendige bl.a leme har svarrt ved at na ind og ud af 1 C 4 -tog, da de er spowkkede med eleektronik til at styre dore, lys etc.

Flere fejl
Flere feil
Infoskæmene virker vilkárligt: IC4's interne informationsskærme viser ofte ingen informationer.
Underdimensioneret ledningsnet: Dét er arragagen til. at de forskellige
togsset ikke kan kobles. Der er simpelthen sástort ts spmondingstald togsset ikke kan kobles. Der er simpeethen sa stort et spæændingstaldi
ledningerne, at informationeme mellem togsættene ikke nà frem. Der skal leaningeme, at informationemne mellem toogs ssttene inke nà frem
altsa skiftes hundredvis af kilometer ledning ialle togssex.
Reservedele: Der er op til 280 dages ventetid pá reservedele fra
Ansaldobired.
Siusk- De
Sjusk: De eveerede IC4-tog er fyldt med hảndvæerksmæsssig siusk. Det gaider b.a. simple ting som el og montage. Mpalidideligt: 1C4- togene skal pá vxrksted for hver 2000 kilometer, de har besseg.
Lase skrver: Rer og ledninger sidder lost imange togsat og skal strammes efter modtagelsen.
CO2-udle dning: IC4 udleder mere CO2 end ant aget. Det anslár den norske forsker Morten Simonsen fra Vestlandsforsking med udgangsppunkt i ist nyy
notat, som Transportministeriet tarudarteidet Daglige nedbrud: De fa I 14 4-tog, der er id drift, rammes af daglige nedbrud p a grund af tekniske problemer og pludselige nedbrud, sả a fgange má aflyses
eller blive forsinket.

The overall performance of the railway system and its components

Matrix of explanations

Railway Robustness definition?

- A common definition of robustness is the ability of a timetable to absorb smaller delays with or without light dispatching measures, given the state of the railway components
- Can be achieved with:
- Running and dwell time supplements
- Buffer times
-Efficiency - the balance between supplements and short travel times
- Minimize the average travel time of the passengers

Timetable supplements

Passenger travel time

Time supplement

Optimal allocation of time supplement in schedules

Speed interval $\boldsymbol{\\| m} / \mathbf{/ h]}$	Time supplements used by IM Rail Net Denmark [\%]	UIC recommendations [\%]
$0-75$	3	3
$76-100$	4	3
$\mathbb{1 0 1 - 1 2 0}$	5	3
$\mathbb{1 2 1 - 1 4 0}$	7	3
$\mathbb{1 4 1 - 1 6 0}$	9	4
$161-180$	11	5
$\mathbb{1 8 1 - 2 0 0}$	13	5
$201-250$	13	6
$251-300$	13	7

Tabel 2: Køreplanstillæg brugt af Banedanmark og UIC forslag

Example of simulation of robustness

Figur 14. Rettidighed for linje 11 fordelt pá retninger i basissituationen

Example

Depart 10 min too late Catch up 5 min Arrive 5 min too late Alternative

Depart on time
5 min. faster time-table
Arrive on time

Railway Robustness indicators (WP3.1)

- Can robustness indicators be used in early planning phases and mathematical models instead of simulation which is time consuming to set up?
- Semantics of robustness indicators: when is a timetable robust according to an indicator?

"Let's build all possible variants and see which one turns out to be the cheapest to ran!"

How do we measure railway robustness?

- Microscopic simulation of the operation
- Requires a detailed infrastructure model
- (Potential) robustness indicators
- Capacity consumption (UIC 406)
- Measure capacity consumption on railway lines by compressing train paths
- Expression of the available buffer time between consecutive trains
- Heterogeneity indices
- Measure the distribution of trains on line sections and at stations
- Indirectly indicate the robustness of a timetable by measuring the spread of buffer times
- Complexity indices
- Evaluate the complexity of infrastructure and the timetable in increasing detail (depending on indicator)
- Increasing complexity = increasing risk of delays

How do we measure robustness?

- Robustness indicators (continued)
- Train path fix points and risk profiles
- Fix points are points in the timetable where a train path is dependent on another train path
- E.g. scheduled crossings and overtakings, level junctions and transition, terminal and transfer stations
- Risk profile can be created for a train or a group of trains as the amount of time supplements between fix points
- Indicator of the timetable's ability to absorb delays on the different sections
- Others

Robustness I ndicators

	Initial delays		Time supp.		Buffer times		PTT	Applicable	Input
Indicator	Size	Dist(s)	Size	Dist(s)	Size	Dist(t)			
UIC 406					()			L	TT
Heterogenity						-		L \& S	TT
Infra. complexity					(-)			S	$\mathrm{I}(\mathrm{P})$
TT complexity	\bullet	\bullet			\bullet	\bullet		L \& S	TT D
Fix points			\bullet	\bullet				L \& S	P
WTTE	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	A	TT D
Simulation	\bullet	\bullet	\bullet	-	\bullet	\bullet	($)$	A	TT D
Max-Plus	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet		A	TT D

Size: size of, Dist: distribution of, s: distance, t: time
L: lines, S: stations, A: lines and stations aggregated
TT: timetable, I: infrastructure, P: plan of operation, D: delay,
PTT: passenger travel times, WTTE: weighted travel time extension

Some references

- Jensen, L.W.

Robustness indicators and capacity models for railway networks. Comming PhD Thesis. 2015

- Jensen L.W., Landex, A. \& Nielsen, O.A.

Evaluation of robustness indicators using railway operation simulation.
COMPRAIL. 2014

- Landex, A. \& Jensen L.W.

Measures for track complexity and robustness of operation at stations.
Journal of Rail Transport Planning \& Management. 2013

- Jensen L.W. \& Landex, A. Measuring Robustness of Timetables at Stations using a Probability Distribution.
RailCopenhagen. 2013

Estimation of passenger preferences
 - What matters?

- Travel time
- Punctuality and travel time variability
- Use of the travel time
- Many other factors
- Frequency, information, cost, terminal

Danish Value of Time studies (extract of 12 surveys compared to bus)

Passenger delays equal train delays?

- Trains tend to be more delayed during peak hour (larger capacity utilization)
- Peak hour delays normally affects more passengers per train
- Delays tends to accumulate during a train run, i.e. more and more delayed e.g. when approaching Copenhagen in the morning peak
- Passenger are hit by the delay when they exit the train. Whether the train is on-time during the run matters less, if it is delayed at the destination
- If a connection is missed, then the passenger delay is much larger than the train delay

Are delays of this train affecting more passengers?

Full scale calculations on the Copenhagen Urban Rail network

- 104 "zones", 80 trains
- 1.8 million inhabitants in Copenhagen,
-330,000 trips made each day by the urban rail
- 42 main time intervals with 1-5 min. Launches
-60,000 OD-elements (sparse matrix)
-1,200 train runs per day
-Diachronic graph with 200,000 links and 120,000 nodes
- A calculation of an entire day takes between 10 and 20 minutes with 5 min. launches

Alternative route options?

Comparing train and passenger delays

Punctuality and delays KUNDERNE ER MERE FORSINKEDE END TOGENE

Hvert datapunkt angiver på ugeniveau hhv. kunde- og togrettidigheden for S-tog (2010-14)

Delays, examples of measurements

Measurements (KPI's) and service contract - Focus on sub-components in the journey
\% delayed more than x minuttes

Questions?

Some key references,...

- Andersson, E., Peterson, A., Törnquist Krasemann, J. (2011). Robustness in Swedish railway traffic timetables. Railrome 2011: Book of Abstracts 4th International Seminar on Railway Operations Modelling and Analysis.
- Bates, J., Polak, J., Jones, P., Cook, A. (2001). The valuation of reliability for personal travel. Transportation Research Part E: Logistics and Transportation Review, 37(2), 191-229.
 Research Board, 2274(1), 114-125.
- Transfer attributes in route choice models for public transport passengers. Dyrberg, Mette Berner; Christensen, Charlotte B.; Anderson, Marie Karen; Nielsen, Otto Anker and Prato, Carlo G. Paper accepted for 4th symposium arranged by European Association for Research in Transportation (hEART), Copenhagen
- Fischetti, M., Monaci, M. (2009). Light robustness. Robust and online Large-scale optimization (pp. 61-84). Springer Berlin Heidelberg.
- Kroon, L. G., Dekker, R., Vromans, M. J. (2007). Cyclic Railway Timetabling: A Stochastic Optimization Approach. Algorithmic Methods for Railway Optimization, 41.
- Jensen, L.W. Robustness indicators and capacity models for railway networks. Comming PhD Thesis. 2015
- Jensen L.W. \& Landex, A. Measuring Robustness of Timetables at Stations using a Probability Distribution. RailCopenhagen. 2013
- Jensen L.W., Landex, A. \& Nielsen, O.A. Evaluation of robustness indicators using railway operation simulation. COMPRAIL. 2014

- Liebchen, C., Schachtebeck, M., Schöbel, A., Stiller, S., Prigge, A. (2010). Computing delay resistant railway timetables. Computers \& Operations Research, 37(5), 857-868.
- Medeossi, G., Marchionna, A. Longo, G. (2009). Capacity and Reliability on Railway Networks: A Simulative Approach.
 Methodological, 34(5), 377-402.
- Nielsen, Otto Anker; Landex, Alex \& Frederiksen, Rasmus Dyhr (2008). Passengers route choices in delayed rail networks. Schedule-based Modelling of Transportation Networks: Theory and Applications. Series: Operations Research/Computer Science Interfaces. Vol 46. (Eds) Wilson, Nigel H.M. \& Nuzzolo, Agostino. Springer, ISBN: 978-0-387-84811-2
- Oort, N.v. (2011). Service Reliability Improvement by enhanced Network and Timetable Planning. Conference on Advanced Systems for Public Transport July 2012, Santiago, Chile.
- Parbo, J. Nielsen, O.A. Prato, C.G. (2014). "User perspectives in Public Transport Timetable Optimisation", Transportation Research Part C, 48, 269284.
- Parbo, J., Nielsen, O. A., Prato, C. G. (2015). Adapting Stopping Patterns in Complex Railway Networks to Reduce Passengers' Travel Time.
- Quaglietta, E., 2011. A Microscopic Simulation Model for Supporting the Design of Railway Systems: Development and Applications. PhD Thesis, University of Naples Federico II, Naples
- Salido, M. A., Barber, F., Ingolotti, L. (2012). Robustness for a single railway line: Analytical and simulation methods. Expert Systems with Applications,39(18), 13305-13327.
- Schöbel, A. Kratz, A. (2009). A Bi-criteria Approach for Robust Timetabling. Robust and OnLine Large-Scale Optimization. Lecture Notes in Computer Science Vol. 5868 pp. 119-144.
- Takeuchi, Y., Tomii, N., Hirai, C. (2007). Evaluation method of robustness for train schedules. Railway Technical Research Institute, Quarterly Reports, 48(4).
- Vansteenwegen, P., Van Oudheusden, D. (2007). Decreasing the passenger waiting time for an intercity rail network. Transportation Research Part B: Methodological, 41(4), 478-492.
- Wardman, M., Chintakayala, V. P. K., Jong, G. d. (2014). Review and Meta-Analysis of European Values of Travel Time.

