
Hand in Glove – Complete
Bounded Model Checking and
Testing of Interlocking Systems

Jan Peleska
University of Bremen and Verified Systems International GmbH

jp@verified.de
2015-08-27

mailto:jp@verified.de

Motivation
• Testing interlocking systems is well known to

require test case selection from an unmanageable
multitude of possibilities

• How can we perform a well-justified test suite with
acceptable effort . . .

• . . . while increasing the confidence into the
strength of the resulting test suite ?

Overview
• Model-based testing

• Validated test models

• Complete test suites

• How many test cases do we need – naive approach

• A refined test strategy – compositional reasoning plus
equivalence class testing plus randomisation plus
boundary value selection

• Conclusion

Model-based Testing
Instead of writing test procedures,

• develop a test model specifying expected behaviour
of SUT

• use generator to identify “relevant” test cases from the
model and calculate concrete test data

• generate test procedures fully automatic

• perform tracing requirements ↔ test cases in a fully
automatic way

Validated Test Models
• The correctness and completeness of the test model is

crucial for the success of a model-based testing strategy

• In a model-driven approach to development and V&V,
there are two variants for arriving at trustworthy test
models

1. Let the V&V team create a redundant model as test
model

2. Let the V&V team validate the existing design model
and use that for test generation

Validated Test Models – Variant 1

Development
Model

SUT
Integrated HW/

SW System

Code

Test Engine

Test
Procedures

Manually developed
or automatically generated
from development model

Automatically
generated
from test model

HW/SW integration tests
check consistency of SUT
with test model

Test Model
Redundant model
developed from
requirements by
the V&V team

Model created by the
development team

MBT-Paradigm

Model System

Abstract Tests Executable
Tests

Is a partial
description of

can be run
against

Are abstract
versions of

Are derived
from

Validated Test Models – Variant 2
Development

and Test Model

SUT
Integrated HW/

SW System

Code

Test Engine

Test
Procedures

Manually developed
or automatically generated
from model

Automatically generated
from model

HW/SW integration tests
check consistency of SUT
with model

Validated Test Models
• We have seen in the RobustRailS presentations that

complete verification of safety properties is possible
for interlocking system designs of realistic size

• This was achieved by bounded model checking
in combination with inductive reasoning

• ☞ Let’s take this model and use it for test case
generation . . .

• . . . so we advocate Variant 2 described above

Complete Test Suites
• For test suites created according to a certain

strategy, we use the terms

• Sound = correct implementations will not be
rejected

• Exhaustive = every faulty implementation will be
detected

• Complete = Exhaustive and Sound

Complete Test Suites
• For black-box testing, completeness depends on a pre-

specified fault domain

• The true behaviour of the system under test must be
captured in a (very large) class of models that may or
may not be correct in relation to the given reference
model

SUT1

Reference model

True behaviour of SUT1 –
complete test suite for D will uncover
every deviation from reference
model

SUT2

True behaviour of SUT2 –
complete test suite for D may not
uncover every deviation
from reference model

Fault domain D

How many test cases do
we need – naive

approach

t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

Example of railway network to
be controlled

Route Controller

Static Internal State:
interlocking tables

Dynamic Internal State:
route/element modes

Input
variables

Output
variables

s 2 Signal : s.ACT

p 2 Point : p.POS

e 2 Section : e.vacancy status

s 2 Signal : s.CMD

p 2 Point : p.CMD

r 2 Route : request(r)

Test Configuration

How many test cases –
naive approach

• A complete test suite requires test cases in the
order of magnitude of at least

⌃I = set of possible input vectors to the controller

|⌃I | = Number of input vectors

n = number of internal states

|⌃I | · n2 test cases

t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

Inputs.

b10, t0, t11,. . . ,b14 2 {FREE, LOCKED, OCCUPIED}

plus
t11.pos, t13.pos 2 {PLUS,MINUS}

plus
mb11,. . . ,mb15 2 {HALT,GO}

This results in
|⌃I | = (8 · 3) · (2 · 2) · (8 · 2) = 1536

Internal State.

Number of states in route controller

Number of routes

This implies

n = (4 + Number of segments in route)

8 ⇡ 6

8

Therefore order of magnitude for the number

of test cases needed for complete test suite is

|⌃I | · n2

= 1536 · 616 ⇡ 4.3 · 1015

Suppose a system test case execution needs 60s.

Then you need

4.3 · 1015

(60 · 24 · 365) ⇡ 8 · 109 years to execute the test suite

Internal State.

Number of states in route controller

Number of routes

This implies

n = (4 + Number of segments in route)

8 ⇡ 6

8

Therefore order of magnitude for the number

of test cases needed for complete test suite is

|⌃I | · n2

= 1536 · 616 ⇡ 4.3 · 1015

Suppose a system test case execution needs 60s.

Then you need

4.3 · 1015

(60 · 24 · 365) ⇡ 8 · 109 years to execute the test suite

Boring!

A refined test strategy . . .

. . . in three steps
• Compositional Reasoning
• Equivalence Class Testing
• Randomisation in combination with

boundary value selection

Compositional Reasoning

• From the knowledge about asserted behaviour of
components . . .

• . . . conclude about the behaviour of the integrated
system

Ci sat Specificationi, i = 1, . . . , n

allows us to conclude that

(C1 k · · · k Cn) sat

n̂

i=1

Specificationi

provided that the integrated system is compositional – this is ensured,

for example, if

• Components do not interfere with each other’s internal state

• Data exchange over interfaces is synchronised

More formally:

Application to Route
Controller Tests

Arbiter Controller
Route 1

Controller
Route n. . .

Shared Variable Interface

• synchronous execution
• synchronous data exchange over shared variables
• Arbiter acts a “semaphore” to ensure mutually
exclusive route allocation

Refined Test Strategy
• Refinement A

• Apply complete test suite on one route controller
at a time

• Conclude by compositional reasoning that whole
system works correctly

• This results in 8 x 1536 x 36 = 442368 test
cases (Number of states)2

Number of input vectors

Number of routes

Refined Test Strategy
• Refinement A

• Apply complete test suite on one route controller
at a time

• Conclude by compositional reasoning that whole
system works correctly

• This results in 8 x 1536 x 36 = 442368 test
cases (Number of states)2

Number of input vectors

Number of routes

Still not satisfied!

442368 test cases for such a small network

configuration! I’m not impressed!

Refinement B – Input
Equivalence Classes

• Recall

• Input equivalence classes are constructed
under the assumption that the SUT will process
input of a class “in the same way”

• This intuitive concept can be formalised . . .

• . . . and also leads to a complete equivalence
testing strategy

Example – Route(20,11)

t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

FREE

MARKED
ALLOCATING

LOCKED

[request]

[cancelled]
[cancelled]

[cancelled]

[released]

[next element released]

[no conflicts]

[all elements locked]

[conflicts]

[some elements unlocked]

[first element occupied]

[route empty]

[some elements unreleased]

6 Internal states of
the route controller

OCCUPIEDOCCUPIED[0..1]

Calculation of Input
Equivalence Classes

conflicts ⌘ b10 2 {L,O} _ t10 2 {L,O} _ t11 2 {L,O} _
route(10, 13) 2 {A} _
route(10, 21) 2 {A,L,O} _
route(12, 11) 2 {A,L,O}

some elements unlocked ⌘ t10 = F _ t11 = F _
t11.pos 6= minus _
mb12 6= HALT _
mb10 6= HALT

Calculation of Input
Equivalence Classes

conflicts ⌘ b10 2 {L,O} _ t10 2 {L,O} _ t11 2 {L,O} _
route(10, 13) 2 {A} _
route(10, 21) 2 {A,L,O} _
route(12, 11) 2 {A,L,O}

some elements unlocked ⌘ t10 = F _ t11 = F _
t11.pos 6= minus _
mb12 6= HALT _
mb10 6= HALT

. . . and all other
track elements

and internal state variables with
arbitrary values

. . .

Calculation of Input
Equivalence Classes

Every non-empty true/false combination of the six
guard conditions defines one input equivalence class

☞ 6 guard conditions introduce approx. 64 input classes
☞ Number of test cases reduced to

64x62 = 2304 test cases per route
☞ 18432 test cases for all 8 routes
☞ These can be automatically executed in 307h – or

executed in parallel on 8 HW/SW integration test
benches in 39h

Calculation of Input
Equivalence Classes

☞ 6 guard conditions introduce approx. 64 input classes
☞ Number of test cases reduced to

64x62 = 2304 test cases per route
☞ 18432 test cases for all 8 routes
☞ These can be automatically executed in 307h – or

executed in parallel on 8 HW/SW integration test
benches in 39h

Fair enough, but
what about

the assumption that SUT is
inside the fault domain?

Should we refine the input classes and the
assumptions about internal SUT states?

• Refining the input classes and assuming more
internal states in the SUT would widen the fault
domain – the probability that the SUT is inside the
domain would be increased

• But this refinement would lead to an exponential
growth in the number of test cases

Refinement C – Combination With
Random and Boundary Value Testing
• Instead of always using the same representative of

each input class representative, select a random
value of this class, whenever it is used in the test
case – combine this technique with boundary
value tests

• Completeness is still guaranteed for SUTs inside
the fault domain

• For SUTs outside the fault domain, the test
strength is significantly increased

Side Remark: Boundary
Values of Logical Formulas

• These are the so-called MC/DC conditions of a
formula

• A and B has MC/DC valuations (0,1), (1,0), (1,1)

• A or B has MC/DC valuations (0,0), (1,0), (0,1)

• Basic idea: check predicate valuations where
exactly one atom is responsible for the formula to
evaluate to true or false

Refinement C – Combination With
Random and Boundary Value Testing
• Experimental results

• Mutation score (= number of uncovered SUT failures)
up to 99%, where naive random testing only achieves
a score of 68%

• Published in Felix Hübner, Wen-ling Huang, and Jan
Peleska: Experimental Evaluation of a Novel
Equivalence Class Partition Testing Strategy. In
Blanchette and Kosmatov (eds.): Proceedings of the
TAP 2015, Springer LNCS, Vol. 9154, pp. 155-173,
2015.

Conclusion
• Testing route controllers for interlocking systems can be

improved with respect to

• Compositional strategy – from component tests to
system integration tests

• Application of a novel complete equivalence class
testing strategy

• Combination of this strategy with randomised value
selection from input classes, including boundary
values

Conclusion

• As a result,

• Test cases are better justified (because they
have been derived by complete strategy)

• The resulting test suites have higher test strength
then suites based on informal test selection
criteria

Conclusion

• As a result,

• Test cases are better justified (because they
have been derived by complete strategy)

• The resulting test suites have higher test strength
then suites based on informal test selection
criteria

Now why would anybody
wish to ask

a question about this stuff ?

