Line Planning in Practice RobustRailS

Simon Bull Richard Lusby Jesper Larsen

Technical University of Denmark

27 August 2015

• Network design

- Network design
- Line planning

- Network design
- Line planning
- Timetabling

- Network design
- Line planning
- Timetabling
- Rolling stock routing
- Crew scheduling

Current Copenhagen S-train Network

- Seven lines
- 85 stations
- 350,000 passengers/day

- A route through the network
- A stopping pattern
- An hourly frequency
- [A rolling stock type]

- A route through the network
- A stopping pattern
- An hourly frequency
- [A rolling stock type]

A set of lines that:

- has capacity for all passengers
- meets all operational and contractual requirements
 - min/max train per station per hour
 - max terminating train per station per hour
 - max trains per track per hour
 - minimum direct connections between certain stations per hour

• can be timetabled

Decompose the problem into two

- Generate a pool of potential lines
- Select a valid line plan from the pool

Rest of Denmark

Some considerations

Operator

• Passenger

Some considerations

Operator

- Operating cost
- Robustness
- Quality of service

• Passenger

Some considerations

Operator

- Operating cost
- Robustness
- Quality of service

Passenger

- Travel time
- Waiting time
- Switching time
- Line frequency

- We can select lines, check they "fit"
- We can estimate operating cost
- We know travel time and can estimate transfer time

- We can select lines, check they "fit"
- We can estimate operating cost
- We know travel time and can estimate transfer time

What is an optimal set of lines?

- Travel time is known
- We can count each transfer on each journey
- We can estimate a transfer time based on headways (from frequency)

- Don't know where passengers go
- Know 5,000 origin+destination pairs, with demands
- Passenger routes depend on the line plan selected

Modeling aims

First:

• Generate a pool of valid lines

Modeling aims

First:

• Generate a pool of valid lines

Then select from the pool:

- Lines
- Frequencies

satisfying all operational, contractual requirements etc.

Modeling aims

First:

• Generate a pool of valid lines

Then select from the pool:

- Lines
- Frequencies

satisfying all operational, contractual requirements etc. Simultaneously:

- Find passenger routes
- Measure passenger 'cost'

Dependent on:

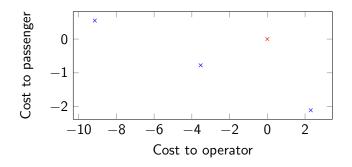
- The lines present
- The lines' frequencies

Model

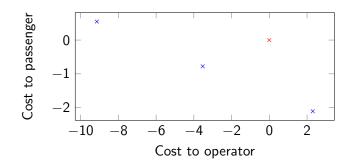
For lines:

$\sum_{l \in \mathcal{L}} \sum_{f \in \mathcal{F}_l} c_{lf} \cdot y_{lf} \leq c_{\max}$		(1)
$\sum_{f\in \mathcal{F}_l} y_{lf} \leq 1$	$\forall l \in \mathcal{L}$	(2)
$\sum_{I \in \mathcal{Z}} \sum_{f \in \mathcal{F}_I} f \cdot y_{If} \geq lpha(\mathcal{Z})$	$\forall \mathcal{Z} \in \mathcal{C}$	(3)
$\sum_{I \in \mathcal{Z}} \sum_{f \in \mathcal{F}_I} f \cdot y_{lf} \leq eta(\mathcal{Z})$	$\forall \mathcal{Z} \in \mathcal{C}$	(4)
$\sum_{I\in\mathcal{Z}}\sum_{f\in\mathcal{F}_{I}}y_{If}\leq \mathcal{Z} -1$	$\forall \mathcal{Z} \in \mathcal{I}$	(5)
$y_{lf} \in \{0,1\}$	$\forall I \in \mathcal{L}, \forall f \in \mathcal{F}_f$	(6)

Model



For lines:


$\sum_{I \in \mathcal{L}} \sum_{f \in \mathcal{F}_I} c_{If} \cdot y_{If} \leq c_{max}$		(1)
$\sum_{f\in \mathcal{F}_l} y_{lf} \leq 1$	$orall l \in \mathcal{L}$	(2)
$\sum_{l \in \mathcal{Z}} \sum_{f \in \mathcal{F}_l} f \cdot y_{lf} \geq \alpha(\mathcal{Z})$	$\forall \mathcal{Z} \in \mathcal{C}$	(3)
$\sum_{I \in \mathcal{Z}} \sum_{f \in \mathcal{F}_I} f \cdot y_{If} \leq eta(\mathcal{Z})$	$\forall \mathcal{Z} \in \mathcal{C}$	(4)
$\sum_{I \in \mathcal{Z}} \sum_{f \in \mathcal{F}_{I}} y_{If} \leq \mathcal{Z} - 1$	$\forall \mathcal{Z} \in \mathcal{I}$	(5)
$y_{lf} \in \{0,1\}$	$\forall l \in \mathcal{L}, \forall f \in \mathcal{F}_f$	(6)

Additionally, passenger routing and linking to line decisions

Some results

Some results

Transfers – more robust for passengers?gity 7% reduction in total passenger transfers, while improving passenger and operating costs 36% reduction in total passenger transfers (!), but increased passenger and operating costs

DTU

For our fixed line pool

- How can the passenger best be served?
- Could relaxing some lower service levels better serve passengers?
- What line plans have an "efficient" trade-off between operator and passenger cost?

DTU

For our fixed line pool

- How can the passenger best be served?
- Could relaxing some lower service levels better serve passengers?
- What line plans have an "efficient" trade-off between operator and passenger cost?

Looking back to the network design:

- What other lines could improve solutions?
- What if certain stations had more turning capacity?
- What if new track existed?

Limitations:

- We model passenger route choice, but not shifting demand
- We don't include timetabling (only estimate costs and feasibility)

Limitations:

- We model passenger route choice, but not shifting demand
- We don't include timetabling (only estimate costs and feasibility) Future work:
 - Further investigate network design possibilities
 - More thorough consideration of operator robustness
 - Collaboration with Sofie Burggraeve and Pieter Vansteenwegen (KU Leuven)